Схема советских электронных часов. Электронные часы - Часы - Конструкции для дома и дачи

Чрезвычайно важен выбор серии микросхем, на которой будет реализована эта схема. Для часов самым важным параметром является ток, потребляемый ими, так как в большинстве случаев или все часы, или часть схемы часов питается от элементов питания. Поэтому при разработке схемы будем выбирать микросхемы, реализованные по .

Разработку схемы часов начнём с кварцевого генератора. Как уже обсуждалось при разработке структурной схемы, в составе генератора будет применён часовой кварцевый резонатор. Для уменьшения стоимости всего устройства в целом применим простейшую схему генератора — ёмкостную трёхточку, а так как генератор предназначен для синхронизации цифрового устройства, то генератор выполним на логическом инверторе. Принципиальная схема такого кварцевого генератора приведена на рисунке 1.


Рисунок 1. Схема кварцевого генератора, выполненная на логическом инверторе

Напомню, что резистор R1 предназначен для автоматического запуска генератора при включении питания. Этот же элемент определяет коэффициент усиления инвертора, и чем больше будет этот коэффициент усиления, тем более прямоугольные колебания будут формироваться на его выходе, а это, в свою очередь, приведёт к снижению тока, потребляемого кварцевым генератором. Выберем R1 равным 10 Мом.

R2 предназначен для предотвращения самовозбуждения генератора на частоте, определяемой ёмкостью кварцедержателя. Выберем значение сопротивления этого резистора 510 кОм.

Второй в схеме генератора предназначен для уменьшения длительности фронтов формируемого прямоугольного колебания. Это необходимо для уменьшения влияния последующей схемы на стабильность колебаний задающего генератора, а также для более надёжной работы цифровых счётчиков делителя частоты.

В качестве микросхемы, содержащей инверторы, выберем микросхему SN74LVC2G04DRL. В этой микросхеме, построенной по КМОП технологии, содержится два инвертора. О том, что в микросхеме содержится два элемента, говорит обозначение 2G. То что это инверторы — обозначается цифрой 04, а то, что в микросхеме использован корпус с шагом выводов 0,5 мм — буквы DRL. Размеры корпуса этой микросхемы не превышают 1.6*1.6мм (у корпуса всего шесть выводов). Микросхема способна работать в диапазоне напряжений от 1,5 до 5,5 В.

Следующей реализуем схему делителя частоты до значения 1 Гц. Напомню, что период колебаний с частотой 1 Гц равен 1 секунде. Как это мы уже определили при разработке структурной схемы, его коэффициент деления должен быть равен 32768. То есть для реализации делителя потребуется 15 счётных триггеров. Конечно, можно взять микросхему К176ИЕ12, специально разработанную для этой цели, но мы не ищем простых путей, поэтому используем универсальную микросхему SN74HC393PW. В ней есть два независимых четырёхразрядных двоичных счётчика. Это означает, что для реализации нашего делителя будет достаточно всего двух микросхем.

Размеры корпуса выбранной микросхемы не превышают 5´6.4мм. У корпуса этой микросхемы имеется 14 выводов. Если к габаритам часов нет особых требований, то можно использовать отечественную микросхему К1564ИЕ19. Ее корпус больше корпуса выбранной микросхемы более чем в два раза. Однако при этом даже номера выводов микросхем будут совпадать. Полученная принципиальная схема генератора секундных импульсов электронных часов приведена на рисунке 2.



Рисунок 2. Схема делителя на 32768 генератора секундных импульсов

Теперь вспомним, что в генераторе временных интервалов необходим еще один делитель частоты. Период импульсов на его выходе будет равен 1 минуте. Делитель на шестьдесят можно реализовать на точно такой же микросхеме что мы использовали и ранее для построения делителя на 32768.

Делитель на шестьдесят не кратен степени числа два, поэтому для его реализации потребуется обратная связь. Для упрощения схемы обратим внимание, что число 60 разбивается на числа 10 и 6. И то, и другое число содержат только две единицы. Выводы 4-х разрядных счетчиков выходят на разные стороны корпуса микросхемы. Поэтому будет удобно использовать два независимых логических элемента “2И”. Это позволит значительно упростить разводку печатной платы и сократить длину соединительных проводов, тем самым, уменьшив площадь печатной платы и возможные помехи от работающей схемы.

В качестве логических элементов "2И" используем две микросхемы SN74LVC1G08DRLR. То, что в микросхеме содержится только один логический элемент, мы определяем по символам 1G, а то, что это логический элемент "2И" — по цифрам 08. Размеры корпуса выбранной микросхемы не превышают 1.6×1.6 мм. Отечественные варианты подобной микросхемы, например К1554ЛИ1, содержат в одном корпусе сразу по четыре логических элемента, расстояние между выводами составляет минимум 1,25 мм. В результате схема, собранная на таких микросхемах, будет идентична по электрическим параметрам, но проиграет по размерам.

Полученная схема делителя частоты на 60, вырабатывающая импульсы с периодом 1 мин и состоящая из последовательно включенных делителей на 10 и на 6, приведена на рисунке 3. Схема реализована всего на трёх микросхемах. Использование обратной связи с выводов Q1 и Q3 превращает двоичный счётчик D1.1 в десятичный, а применение обратной связи с выводов Q1 и Q2 микросхемы D1.2 реализует счётчик по модулю 6.



Рисунок 3. Схема делителя на 60 генератора минутных импульсов

Итак, мы закончили разработку генератора минутных импульсов. Всего нам потребовалось шесть микросхем, при этом три из них относятся к микросхемам малой логики и занимают минимум места на печатной плате цифрового устройства.

Теперь можно приступить к разработке принципиальной схемы счетчика временных интервалов. Как мы уже выяснили при разработке структурной схемы часов, в состав этого счётчика входит точно такой же делитель на 60, как и в генераторе минутных импульсов, поэтому можно воспользоваться той же самой схемой. Отличие заключается только в том, что на этот раз нам потребуются все выходы счётчиков. Сигналы с этих выводов мы будем подавить на вход блока индикации.

Последний счётчик, который нам потребуется для реализации блока счётчика временных интервалов - это счётчик на 24. Этот счётчик было бы удобно реализовать на микросхеме десятичного счётчика, однако сдвоенных микросхем асинхронных десятичных счётчиков не производится, поэтому реализуем счётчик часов на той же микросхеме, что и остальные блоки часов — SN74HC393PW.

Сложность в реализации этой схемы заключается в том, что коэффициент счёта не кратен десяти, поэтому сигнал обратной связи необходимо заводить на оба счётчика одновременно. Можно было бы реализовать этот счётчик в двоичном виде, но тогда возникнут сложности с отображением содержимого этого счётчика. Для того, чтобы реализовать на первом 4-х разрядном счётчике десятичный счётчик и одновременно получить возможность сброса всего счётчика часов в начале суток используем дополнительный логический элемент “2ИЛИ”. Сигнал сброса на выходе этой микросхемы появится либо в случае достижения первым счётчиком числа 10, либо при достижении всем счётчиком значения 24.

В качестве логического элемента “2ИЛИ” используем микросхему малой логики, подобную уже использованной микросхеме “2И”. Это микросхема SN74LVC1G32DRLR. Цифра 32 в названии микросхемы и обозначает логический элемент “2ИЛИ”. Размеры корпуса этой микросхемы не превышают 1.6´1.6мм. В результате, несмотря на несколько более сложную принципиальную схему площадь, занимаемая счётчиком часов, значительно уменьшается.

Полная принципиальная схема счётчика часовых импульсов, реализованная на микросхеме SN74HC393PW приведена на рисунке 4. Использование обратной связи с выводов Q1 и Q3 первой микросхемы превращает ее в десятичный счётчик. Для реализации счетчика по модулю 24 мы используем обратную связь с вывода Q1 старшего разряда счётчика (двойка) и вывода Q2 младшего разряда счётчика часов (четвёрка).



Рисунок 4. Схема счётчика часовых импульсов

Таким образом, мы реализовали основную часть схемы часов, но как это уже обсуждалось при разработке структурной схемы этого недостаточно. Требуется уметь отображать полученную цифровую информацию. Перейдём к разработке блока индикации часов.

Литература:

Вместе со статьей "Разработка принципиальной схемы часов" читают:

Не так давно я копался в коробке со старыми компонентами. Я искал что-то другое, но остановился, когда в руки попалось несколько газоразрядных индикаторов. Однажды (давно, очень давно) я добыл их из старого калькулятора.

Вспоминаю… Тридцать лет назад шесть индикаторов были маленьким сокровищем. Тот, кто мог тогда сделать с такими индикаторами часы на ТТЛ логике, считался искушенным знатоком своего дела.

Свечение газоразрядных индикаторов казалось более теплым. Через несколько минут мне стало интересно, заработают ли эти старые лампы, и захотелось что-нибудь сделать на них. Теперь-то сделать такие часы очень просто. Достаточно взять микроконтроллер…

Поскольку тогда же я увлекался программированием микроконтроллеров на языках высокого уровня, я решил немного поиграть. Я попытался сконструировать простые часы на цифровых газоразрядных индикаторах.

Цель конструирования

Я решил, что часы должны иметь шесть цифр, а время должно устанавливаться минимальным количеством кнопок. Кроме того, я хотел попытаться использовать несколько наиболее распространенных семейств микроконтроллеров разных производителей. Программу я намеревался писать на языке C.

Газоразрядным индикаторам для работы требуется высокое напряжение. Но иметь дело с опасным сетевым напряжением я не хотел. Часы должны были питаться безвредным напряжением 12 В.

Поскольку основной моей целью была игра, вы не найдете здесь описания механической конструкции и чертежей корпуса. При желании, вы сами сможете изменить часы в соответствии со своими вкусами и опытом.

Вот что у меня получилось:

  • Индикация времени: ЧЧ ММ СС
  • Индикация будильника: ЧЧ ММ --
  • Режим отображения времени: 24 часа
  • Точность ±1 секунда в день (зависит от кварцевого резонатора)
  • Напряжении питания: 12 В
  • Потребляемый ток: 100 мА

Схема часов

Для устройства с шестиразрядным цифровым дисплеем естественным решением был мультиплексный режим.

Назначение большинства элементов блок-схемы (Рисунок 1) понятно без комментариев. В определенной степени нестандартной задачей было создание преобразователя уровней ТТЛ в высоковольтные сигналы управления индикаторами. Драйверы анодов сделаны на высоковольтных NPN и PNP транзисторах. Схема позаимствована у Стефана Кнеллера (http://www.stefankneller.de).

ТТЛ микросхема 74141 содержит двоично-десятичный дешифратор и высоковольтный драйвер для каждой цифры. Возможно, заказать одну микросхему будет сложно. (Хотя я не знаю, производятся ли они вообще кем-либо сейчас). Но уж если вы нашли газоразрядные индикаторы, 74141 могут оказаться где-то рядом:-). Во времена ТТЛ логики альтернативы микросхеме 74141 практически не было. Так что попробуйте найти где-нибудь одну штуку .

Индикаторам требуется напряжение порядка 170 В. Разрабатывать специальную схему для преобразователя напряжения не имеет смысла, поскольку существует огромное количество микросхем повышающих преобразователей. Я выбрал недорогую и широко доступную микросхему MC34063. Схема преобразователя почти полностью скопирована с технического описания MC34063. К ней лишь добавлен силовой ключ T13. Внутренний ключ для такого высокого напряжения не подходит. В качестве индуктивности для преобразователя я использовал дроссель. Он показан на Рисунке 2; его диаметр 8 мм, а длина 10 мм.

КПД преобразователя вполне хороший, а выходное напряжение относительно безопасно. При токе нагрузки 5 мА выходное напряжение падает до 60 В. R32 выполняет функцию токоизмерительного резистора.

Для питания логики используется линейный регулятор U4. На схеме и на плате есть место для резервного аккумулятора. (3.6 В - NiMH или NiCd). D7 и D8 - это диоды Шоттки, а резистор R37 предназначен для ограничения зарядного тока в соответствии с характеристиками аккумулятора. Если вы собираете часы просто для развлечения, аккумулятор, D7, D8 и R37 вам не потребуются.

Окончательная схема показана на Рисунке 3.

Рисунок 3.

Кнопки установки времени подключены через диоды. Состояние кнопок проверяется установкой логической «1» на соответствующем выходе. В качестве бонусной функции к выходу микроконтроллера подключен пьезоизлучатель. Чтобы заткнуть этот противный писк, используйте маленький выключатель. Для этого вполне подошел бы и молоток, но это уж на крайний случай:-).

Перечень компонентов схемы, рисунок печатной платы и схему размещения элементов можно найти в разделе «Загрузки».

Процессор

Управлять эти несложным устройством может практически любой микроконтроллер с достаточным количеством выводов, минимально необходимое количество которых указано в Таблице 1.

Таблица 1.
Функция Выводы
Питание 2
Кварцевый резонатор 2
Управление анодами 6
Драйвер 74141 4
Вход кнопок 1
Пьезоизлучатель 1
Всего 16

Каждый изготовитель разрабатывает собственные семейства и типы микроконтроллеров. Расположение выводов индивидуально для каждого типа. Я постарался сконструировать универсальную плату для нескольких типов микроконтроллеров. На плате установлена 20-контактная панелька. С помощью нескольких проволочных перемычек вы можете адаптировать ее для разных микроконтроллеров.

Ниже перечислены микроконтроллеры, проверенные в этой схеме. Вы можете поэкспериментировать с другими типами. Преимуществом схемы является возможность использования разных процессоров. Радиолюбители, как правило, используют одно семейство микроконтроллеров и имеют соответствующий программатор и программный инструментарий. С микроконтроллерами других изготовителей могут возникнуть проблемы, поэтому я дал вам возможность выбора процессора из любимого семейства.

Вся специфика включения различных микроконтроллеров отражена в Таблицах 2…5 и на Рисунках 4…7.

Таблица 2.
Freescale
Тип MC68HC908QY1
Кварцевый резонатор 12 МГц
Конденсаторы C1, C2 22 пФ
Программа freescale.zip
(см. раздел «Загрузки»)
Установки

Примечание: Параллельно кварцевому резонатору включен резистор 10 МОм.

Таблица 3.
Microchip
Тип PIC16F628A
Кварцевый резонатор 32.768 кГц
Конденсаторы C1, C2 22 пФ
Программа pic628.zip
(см. раздел «Загрузки»)
Установки Внутр. генератор 4 МГц - I/O RA6,
MCLR OFF, WDT OFF, LVP OFF,
BROUT OFF, CP OFF, PWRUP OFF

Примечание: Микросхему необходимо развернуть в панельке на 180°.

Таблица 4.
Atmel
Тип ATtiny2313
Кварцевый резонатор 12 МГц
Конденсаторы C1, C2 15 пФ
Программа attiny.zip
(см. раздел «Загрузки»)
Установки Кв. генератор 8 МГц, RESET ON

Примечание: Добавьте SMD компоненты R и C к выводу RESET (10 кОм и 100 нФ).

Таблица 5.
Atmel
Тип AT89C2051
Кварцевый резонатор 12 MHz
Конденсаторы C1, C2 22 пФ
Программа at2051.zip
(см. раздел «Загрузки»)
Установки --

Примечание: Добавьте SMD компоненты R и C к выводу RESET (10 кОм и 100 нФ); выводы, отмеченные звездочками, соедините с шиной питания +Ub через SMD резисторы 3.3 кОм.

Сравнив коды для разных микроконтроллеров, вы увидите, что они очень похожи. Различия имеются в доступе к портам и определению функций прерываний, а также в том, что зависит от компонентов обвязки.

Исходный код состоит из двух секций. Функция main() настраивает порты и запускает таймер, формирующий сигналы прерывания. После этого программа сканирует нажатые кнопки и устанавливает соответствующие значения времени и будильника. Там же в главном цикле текущее время сравнивается с будильником и включается пьезоизлучатель.

Вторая часть является подпрограммой обработки прерываний от таймера. Подпрограмма, которая вызывается через каждую миллисекунду (в зависимости от возможностей таймера), инкрементирует переменные времени и управляет цифрами дисплея. Кроме того, проверяется состояние кнопок.

Запуск схемы

Монтаж компонентов и настройку начинайте с источника питания. Запаяйте регулятор U4 и окружавшие его компоненты. Проверьте наличие напряжения 5 В для микросхемы U2 и 4.6 В для U1. Следующим шагом соберите высоковольтный преобразователь. Подстроечным резистором R36 установите напряжение 170 В. Если диапазона подстройки окажется недостаточно, немного измените сопротивление резистора R33. Теперь установите микросхему U2, транзисторы и резисторы схемы драйверов анодов и цифр. Соедините входы U2 с шиной GND и последовательно подключайте по одному из резисторов R25 - R30 к шине питания +Ub. В соответствующих позициях должны зажигаться цифры индикаторов. На последнем этапе проверки схемы соедините с землей вывод 19 микросхемы U1 - должен запищать пьезоизлучатель.

Исходные коды и откомпилированные программы вы найдете в соответствующем ZIP файле в разделе «Загрузки». После зашивки программы в микроконтроллер тщательно проверьте каждый вывод в позиции U1 и установите необходимые перемычки из проволоки и припоя. Сверяйтесь с изображениями микроконтроллеров, приведенными выше. Если микроконтроллер запрограммирован и подключен правильно, должен заработать его генератор. Вы можете установить время и будильник. Внимание! На плате есть место для еще одной кнопки - это запасная кнопка для будущих расширений:-).

Проверьте точность частоты генератора. Если она не укладывается в ожидаемый диапазон, слегка измените номиналы конденсаторов C1 и C2. (Припаяйте параллельно конденсаторы небольшой емкости или замените их другими). Точность хода часов должна улучшиться.

Заключение

Небольшие 8-битные процессоры вполне приспособлены для языков высокого уровня. Изначально язык C не предназначался для небольших микроконтроллеров, однако для простых приложений вы прекрасно можете использовать его. Ассемблер лучше подойдет для сложных задач, требующих соблюдения критических времен или максимальной загрузки процессора. Для большинства радиолюбителей подойдут как бесплатные, так и условно-бесплатные ограниченные версии компилятора C.

Программирование на C одинаково для всех микроконтроллеров. Вы должны знать функции аппаратных средств (регистров и периферии) выбранного типа микроконтроллера. Будьте осторожны с битовыми операциями - язык C к манипуляциям с отдельными битами не приспособлен, что можно увидеть на примере исходного когда для ATtiny.

Закончили? Тогда настройтесь на созерцание вакуумных ламп и смотрите…

…возвращаются старые времена … :-)

Примечание редакции

Полным аналогом SN74141 является микросхема К155ИД1, выпускавшаяся минским ПО «Интеграл».
Микросхему без труда можно найти в сети Интернет.

Данные часы собранны на хорошо известном комплекте микросхем - К176ИЕ18 (двоичный счетчик для часов с генератором сигнала звонка),

К176ИЕ13 (счетчик для часов с будильником) и К176ИД2 (преобразователь двоичного кода в семисегментный)

При включении питания в счетчик часов, минут и в регистр памяти будильника микросхемы U2 автоматически записываются нули. Для установки

времени следует нажать кнопку S4 (Time Set) и придерживая ее нажать кнопку S3 (Hour) - для установки часов или S2 (Min) - для установки

минут. При этом показания соответствующих индикаторов начнут изменяться с частотой 2 Гц от 00 до 59 и далее снова 00. В момент перехода

от 59 к 00 показания счетчика часов увеличатся на единицу. Установка времени будильника происходит так же, только придерживать нужно

кнопку S5 (Alarm Set). После установки времени срабатывания будильника нужно нажать кнопку S1 для включения будильника (контакты

замкнуты). Кнопка S6 (Reset) служит для принудительного сброса индикаторов минут в 00 при настройке. Светодиоды D3 и D4 играют роль

разделительных точек, мигающих с частотой 1 Hz. Цифровые индикаторы на схеме расположены в правильном порядке, т.е. сначала идут

индикаторы часов, две разделительные точки (светодиоды D3 и D4) и индикаторы минут.

В часах использовались резисторы R6-R12 и R14-R16 ваттностью 0,25W остальные - 0,125W. Кварцевый резонатор XTAL1 на частоту 32 768Hz -

обычный часовой, Транзисторы КТ315А можно заменить на любые маломощные кремниевые соответствующей структуры, КТ815А - на транзисторы

средней мощности со статическим коэффициентом передачи тока базы не менее 40, диоды - любые кремниевые маломощные. Пищалка BZ1

динамическая, без встроенного генератора, сопротивление обмотки 45 Om. Кнопка S1 естественно с фиксацией.

Индикаторы использованы TOS-5163AG зеленого свечения, можно применить любые другие индикаторы с общим катодом, не уменьшая при этом

сопротивление резисторов R6-R12. На рисунке Вы можете наблюдать распиновку данного индикатора, выводы показаны условно, т.к. представлен

вид сверху.

После сборки часов, возможно, нужно будет подстроить частоту кварцевого генератора. Точнее всего это можно сделать, контролируя цифровым

частотомером период колебаний 1 с на выводе 4 микросхемы U1. Настройка генератора по ходу часов потребует значительно большей затраты

времени. Возможно, придется также подстроить яркость свечения светодиодов D3 и D4 подбором сопротивления резистора R5, чтобы все

светилось равномерно ярко. Потребляемый часами ток не превышает 180 мА.

Часы питаются от обычного блока питания, собранного на плюсовом микросхемном стабилизаторе 7809 с выходным напряжением +9V и током 1,5A.

В продаже можно встретить много различных моделей и вариантов электронных цифровых часов, но большинство из них расчитаны на использование внутри помещений, так как цифры маленькие. Однако иногда требуется разместить часы на улице - например на стене дома, или на стадионе, площади, то есть там, где они будут видны на большом расстоянии многими людьми. Для этого и была разработана и успешно собрана данная схема больших светодиодных часов, к которым можно подключить (через внутренние транзисторные ключи) LED индикаторы сколь угодно большого размера. Увеличить принципиальную схему можно кликнув по ней:

Описание работы часов

  1. Часы. В данном режиме идёт стандартный вид отображения времени. Имеется цифровая коррекция точности хода часов.
  2. Термометр. В этом случае устройство производит измерение температуры комнаты либо воздуха на улице, с одного датчика. Диапазон от -55 до +125 градусов.
  3. Предусмотрен контроль источника питания.
  4. Вывод информации на индикатор попеременно - часов и термометра.
  5. Для сохранения настроек и установок при пропадании 220В, применена энергонезависимая память.


Основой устройства является МК ATMega8, который прошивают выставляя фузы согласно таблице:

Работа и управление часами

Включив часы в первый раз, на экране появится рекламная заставка, после чего переключится на отображение времени. Нажимая на кнопку SET_TIME индикатор пойдёт по кругу из основного режима:

  • режим отображения минут и секунд. Если в этом режиме одновременно нажать на кнопку PLUS и MINUS , то произойдет обнуление секунд;
  • установка минут текущего времени;
  • установка часов текущего времени;
  • символ t . Настройка продолжительности отображения часов;
  • символ o . Время отображения символов индикации внешней температуры (out);
  • величина ежесуточной коррекции точности хода часов. Символ c и значение коррекции. Пределы установки от -25 до 25 сек. Выбранная величина будет ежесуточно в 0 часов 0 минут и 30 секунд прибавлена или вычтена из текущего времени. Более подробно читайте в инструкции, что в архиве с файлами прошивки и печатных плат.

Настройка часов

Удерживая кнопки PLUS /MINUS делаем ускоренную установку значений. После изменения каких-либо настроек, через 10 секунд новые значения запишутся в энергонезависимую память и будут считаны оттуда при повторном включении питания. Новые настройки вступают в силу по ходу установки. Микроконтроллер отслеживает наличие основного питания. При его отключении питание прибора осуществляется от внутреннего источника. Схема резервного модуля питания показана ниже:


Для уменьшения тока потребления отключаются индикатор, датчики и кнопки, но сами часы продолжают отсчитывать время. Как только напряжение сети 220В появится - все функции индикации восстанавливаются.


Так как устройство задумывалось как большие светодиодные часы, в них есть два дисплея: большой светодиодный - для улицы, и маленький ЖКИ - для удобства настройки основного дисплея. Большой дисплей расположен на расстоянии несколько метров от блока управления и соединен двумя кабелями по 8 проводов. В управление анодами внешнего индикатора индикаторов, применены транзисторные ключи по приведенной в архиве схеме. Авторы проекта: Александрович & SOIR.

3.1.1. Электрическая схема электронных часов на ЖКИ

Жидкокристаллический индикатор представляет собой две плоские пластинки из стекла, склеенные по периметру таким образом, чтобы между стеклами оставался промежуток, его заполняют специальными жидкими кристаллами.

На обеих пластинах специальным веществом, которое прозрачно и проводит электрический ток, нарисованы собственно сегменты индикатора. Обычно одна из пластинок выполняет роль общего провода.

Жидкокристаллические индикаторы работают с поляризованным светом - для этого с обеих сторон индикатора наклеены специальные пленочные поляризаторы. В зависимости от взаимного расположения поляризаторов, ЖКИ может быть позитивным (темные символы на светлом фоне - как в часах, микрокалькуляторах) и негативным (прозрачные символы на черном фоне - используются в автомобильных магнитолах). Жидкие кристаллы, при отсутствии протекающего через них тока, располагаются внутри индикатора хаотическим образом, и практически не перекрывают свет, т. е. все сегменты прозрачны. При возникновении между какими-нибудь сегментами на обеих сторонах стекла разности потенциалов, жидкие кристаллы в этом месте упорядоченно выстраиваются поперек светового потока, перекрывая его, и соответствующий сегмент становится непрозрачным. Причем, изменяя величину приложенного напряжения, можно изменять степень непрозрачности индикатора.

Жидкие кристаллы - диэлектрик, т. е. не проводят электрический ток. Поэтому управлять ими можно только переменным напряжением: ведь две обкладки ЖКИ-стекла - это практически конденсатор, а при подаче на выводы конденсатора переменного напряжения через него течет ток. Для жидких кристаллов нужен ничтожный ток, поэтому частота управляющего напряжения может быть довольно низкой (50…100 Гц). Сверху диапазона эта частота практически не ограничена, однако не рекомендуется делать ее выше 1 кГц - проводники, которыми нарисованы сегменты, имеют конечное сопротивление (обычно 1…10 кОм), поэтому при увеличении частоты контрастность индикатора будет ухудшаться. Заодно, благодаря этому сопротивлению, индикатор нечувствителен к перегрузкам по напряжению - он выдерживает напряжение до 30…50 В (при этом сегменты, иногда вместе с дорожками, чернеют, и после снятия напряжения становятся прозрачными в течение нескольких минут, в то время как все остальные индикаторы выходят из строя уже при двукратных перегрузках. Но все равно, несмотря на отсутствие видимых повреждений, слишком увлекаться перегрузками ЖКИ не стоит - это резко уменьшает ресурс его работы, в частности, снижает контрастность.

Для управления ЖКИ обычно используются логические элементы «Исключающее ИЛИ», один из входов всех элементов соединяют вместе и подключают к генератору и общему выводу ЖКИ, а на второй вход элемента подают управляющие сигналы. Как известно, эти элементы при уровне «логического нуля» на одном из входов работают как повторители уровня с другого входа (то есть разность напряжений между выходом элемента и общим индикатора равна нулю - сегмент не виден), а при «единице» - как инверторы, и соответствующий сегмент индикатора становится видимым. Таким образом, чтобы «засветить» сегмент, на вход элемента нужно подать «единицу».

Кроме того, для работы с ЖКИ удобно использовать микросхемы серии К176: К176ИЕ3 (счетчик-делитель на 2 и 6), К176ИЕ4 (счетчик-делитель на 4 и 10) и К176ИД2 или К176ИД3 (двоично-десятичные дешифраторы, только у К176ИД3 более мощные выходы). У всех этих микросхем на выходах уже стоят элементы «Исключающее ИЛИ», что значительно упрощает схему устройства.

На рис. 3.1 приведена схема несложных электронных часов, состоящих из минимума деталей. Для большего удобства в схему добавлен узел гашения нуля в разряде десятков часов.

На специализированной микросхеме К176ИЕ12 собран кварцевый генератор, в качестве кварцевого резонатора ZQ1 можно использовать любой «часовой» кварц. Частоту генератора можно скорректировать, изменяя емкость конденсатора С1. На выводе 4 микросхемы формируются секундные импульсы - они используются для моргания разделительной точки, на выводе 10 секундные импульсы уже разделены на 60. Таким образом получаются минутные импульсы. Они поступают на линейку счетчиков DD2…DD5: DD2 считает единицы минут, DD3 - десятки минут и т. д. На диоде VD2 и резисторе R8 собрана схема обнуления часов - как только часы досчитают до 24, на выходах 4 DD4 и 2 DD5 появятся уровни логической «1», которые обнулят все счетчики. Пока количество часов меньше 24, хотя бы на одном из этих выводов присутствует уровень логического «0», который запрещает сброс.

Так как у микросхемы DD1 нет сравнительно низкочастотного выхода, пришлось задействовать тактовые выходы T1…T4. На элементах R3 и VD1 собран простейший сумматор, благодаря которому в точке соединения этих элементов - правильный меандр частотой 256 Гц. Он используется для работы ЖКИ.

На элементах DD6.1, DD6.2 собрана схема управления десятичной точкой (все остальные точки и дополнительные сегменты должны быть соединены с общим проводом индикатора). Элемент DD6.2 выполняет функцию инвертора (при уровне логической «1» на управляющем входе он замкнут и подает уровень «0» на DD6.1, при «0» - разомкнут и на вход DD6.1 поступает «1» через резистор R4), элемент DD6.1, в зависимости от уровня на выходе «1 Гц», подает на сегмент «точка» то прямой, то инвертированный сигнал генератора, т. е. точка будет видна на протяжении 0,5 сек, а следующие 0,5 сек - нет.

Конечно, было бы проще собрать этот узел на одном элементе «Исключающее ИЛИ», однако собрать на оставшихся элементах схему гашения лишнего нуля будет невозможно, а вводить в схему лишнюю микросхему - логически неразумно.

Этот самый узел гашения нуля собран на элементах DD6.3 и DD6.4. Несложно заметить, что в старшем разряде сегмент f будет виден только при коде цифры 0, при кодах цифр 1 и 2 - этот сегмент не светится. Поэтому вполне логично будет задействовать этот выход дешифратора для нашего анализатора. При уровне логической «1» на выходе генератора элемент DD6.4 соединяется с выходом f дешифратора, и заряжает или разряжает конденсатор С3. В это время на выводе 6 микросхемы DD5 уровень логической «1». Таким образом, при коде цифры «0», на выходе сегмента f будет уровень логического «0», а при кодах цифр 1 или 2 там будет уровень логической «1». Соответствующий уровень и на конденсаторе С3. При уровне логической «1» на этом конденсаторе элемент DD6.3 замкнут, и микросхема DD5 работает так же, как и остальные счетчики - разряд десятков часов виден, при уровне логического «0» на конденсаторе С3 элемент DD6.3 разомкнут, и выходы счетчика не переключаются.

Данный текст является ознакомительным фрагментом. Из книги Удивительная механика автора Гулиа Нурбей Владимирович

Электрическая «капсула» Автор еще раз убеждается во всесилии электричества, равно как и в том, что от воплощения своей мечты он пока еще очень далек… Как накопить электроны? Да, тепловые накопители если и не завели меня в дебри, то уж точно направили по ложному пути.

Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора Красник Валентин Викторович

Электрическая часть Вопрос. В соответствии с какими требованиями производится выбор оборудования для аккумуляторных батарей?Ответ. Выбор электронагревательных устройств, светильников, электродвигателей вентиляции и электропроводок для основных и вспомогательных

Из книги Приборостроение автора Бабаев М А

35. Элементы электронных цепей ИП Зачем нужны электронные устройства в ИП (измерительных приборах)? Для самых различных целей: от усиления слабых сигналов датчиков до преобразования или генерирования сигналов самых различных форм и частоты.При их изготовлении используют

Из книги Изобретения Дедала автора Джоунс Дэвид

Электрическая чистка С точки зрения химической технологии мытье посуды представляет собой чересчур неэкономичный процесс: чтобы смыть немного грязи, расходуется огромное количество воды. Еще более вопиющие примеры расточительности дают нам стирка и баня, а многие

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Электрическая часть На рис. 11.17 приведена схема управления сервомоторами с помощью PIC-микроконтроллера. Питание сервомоторов и микроконтроллера осуществляется от батареи 6 В. Батарейный отсек 6 В содержит 4 элемента АА. Схема микроконтроллера собрана на небольшой

Из книги Show/Observer МАКС 2011 автора Автор неизвестен

Электрическая схема Электрическая схема представляет собой электронный ключ, управляемый интенсивностью светового потока. Когда уровень средней окружающей освещенности мал (возможна подстройка порогового значения), то схема отключает питание двигателя редуктора.

Из книги Электронные самоделки автора Кашкаров А. П.

«Фрегат Экоджет»: новая схема самолета и новая бизнес-схема Авиасалон МАКС традиционно выступает смотровой площадкой новых идей в самолетостроении. ФПГ «Росавиаконсорциум» по собственной инициативе разрабатывает программу создания широкофюзеляжного

Из книги Электронные фокусы для любознательных детей автора Кашкаров Андрей Петрович

4.4.2. Электрическая схема таймера При подключении ЭМТ к сети 220 В через ограничительный резистор R1 напряжение поступает на катушку К1 (имеющую сопротивление 3,9 кОм). С помощью системы шестеренок и приложенного к этой катушке напряжения (с помощью электромагнитной индукции)

Из книги Сварка автора Банников Евгений Анатольевич

4.8. Как локализовать помехи в электронных устройствах Почти в любой области измерений значение предельно различимого слабого сигнала определяется шумом - мешающим сигналом, который забивает полезный сигнал. Даже если измеряемая величина и не мала, шум снижает точность

Из книги История электротехники автора Коллектив авторов

Приложение 10 Фирмы-производители электронных компонентов и их адреса в Интернете Компоненты для радиоэлектронной промышленности выпускаются различными фирмами-производителями, филиалы которых расположены по всему миру. Чтобы не запутаться в маркировке

Из книги Как стать гением [Жизненная стратегия творческой личности] автора Альтшуллер Генрих Саулович

Глава 2 Разные схемы доработки электронных игрушек 2.1. Доработка «Кота в мешка» В продаже появилась игрушка, которая в соответствии со своим внешним видом так и называется – «Кот в мешке». Даже при незначительном акустическом воздействии (шуме, громком голосе, а тем более

Из книги автора

Глава 3 Безопасная доработка промышленных электронных

Из книги автора

Из книги автора

7.2. ЭЛЕКТРИЧЕСКАЯ СВАРКА 7.2.1. ЭЛЕКТРИЧЕСКАЯ ДУГОВАЯ СВАРКА Электрическая дуговая сварка была изобретена в России. Н.Н. Бенардос 6 июля 1885 г. подал заявку и получил привилегию Департамента торговли и мануфактур № 11982 (1886 г.) на способ «соединения и разъединения металлов

Из книги автора

11.3.1. ИСТОЧНИКИ ЭЛЕКТРОННЫХ И ИОННЫХ ПОТОКОВ Под электронно-ионной технологией в широком смысле понимают комплекс методов обработки материалов и объектов потоками электронов, ионов, плазмы и нейтральных атомов. Данные процессы широко используются в металлургии,

Из книги автора

15 часов награды Итак, чтобы быть творческой личностью, недостаточно иметь лишь общественно полезную, значительную достойную цель. Ведь поставленная цель должна быть реализована, а одного желания для этого мало. Чтобы переплыть океан, надо уметь строить корабли. Чтобы

gastroguru © 2017